| Рассмотрено и принято    | Согласовано           | Утверждаю                    |
|--------------------------|-----------------------|------------------------------|
| на заседании ШПГ         | Зам.директора по УВР  | Директор МКОУ Октябрьской СШ |
| протокол № 1             | Е.И.Кононова          | Л.В.Романова                 |
| от " 30 " августа 2023г. | « 30 » августа 2023г. | Приказ № 137                 |
| Руководитель ШПГ         |                       | От « 31 » августа 2023г.     |
| И.А.Кузнецова            |                       |                              |

Муниципальное казенное общеобразовательное учреждение Октябрьская средняя школа

# РАБОЧАЯ ПРОГРАММА

по химии

в 11 классе

на 2023-2024 учебный год

Учитель: Кононова Е.И.

с.Октябрьское, 2023

## Планируемые результаты

## Личностные результаты:

- 1) в *ценностно-ориентационной сфере* чувство гордости за российскую химическую науку, гуманизм, отношение к труду, целеустремленность;
  - 2) в трудовой сфере готовность к осознанному выбору дальнейшей образовательной и профессиональной траектории;
  - 3) в познавательной (когнитивной, интеллектуальной)сфере умение управлять своей познавательной деятельностью.

*Метапредметные результаты* освоения выпускниками средней школы программы по химии являются:

- 1) использование умений и навыков различных видов познавательной деятельности, применение основных методов познания (системно-информационный анализ, моделирование) для изучения различных сторон окружающей действительности;
- 2) использование основных интеллектуальных операций: формулирование гипотез, анализ и синтез, сравнение, обобщение, систематизация, выявление причинно-следственных связей, поиск аналогов;
  - 3) умение генерировать идеи и определять средства, необходимые для их реализации;
  - 4) умение определять цели и задачи деятельности, выбирать средства реализации цели и применять их на практике;
- 5) использование различных источников для получения химической информации, понимание зависимости содержания и формы представления информации от целей коммуникации и адресата.

В области предметных результатов изучение химии предоставляет ученику возможность научиться:

- 1) в познавательной сфере: на базовом уровне
- а) давать определения изученным понятиям;
- б) описывать демонстрационные и самостоятельно проведенные эксперименты, используя для этого естественный (русский, родной) язык и язык химии:
  - в) объяснять строение и свойства изученных классов неорганических и органических соединений;
  - г) классифицировать изученные объекты и явления;
  - д) наблюдать демонстрируемые и самостоятельно проводимые опыты, химические реакции, протекающие в природе и в быту;
  - е) исследовать свойства неорганических и органических веществ, определять их принадлежность к основным классам соединений;
  - ж) обобщать знания и делать обоснованные выводы о закономерностях изменения свойств веществ;
  - з) структурировать учебную информацию;
  - и) интерпретировать информацию, полученную из других источников, оценивать ее научную достоверность;
- к) объяснять закономерности протекания химических реакций, прогнозировать возможность их протекания на основе знаний о строении вещества и законов термодинамики;
  - л) объяснять строение атомов элементов I-IV периода с использованием электронных конфигураций атомов;
  - м) моделировать строение простейших молекул неорганических и органических веществ, кристаллов;
  - н) проводить расчеты по химическим формулам и уравнениям;

- о) характеризовать изученные теории;
- п) самостоятельно добывать новое для себя химическое знание, используя для этого доступные источники информации;

на углубленном уровне — требования к предметным результатам освоения углубленного курса химии включают требования к результатам освоения базового курса и дополнительно отражают:

- 1) сформированность системы знаний об общих химических закономерностях, законах, теориях;
- 2) сформированность умений исследовать свойства неорганических и органических веществ, объяснять закономерности протекания химических реакций, прогнозировать возможность их осуществления;
- 3) владение умениями выдвигать гипотезы на основе знаний о составе, строении вещества и основных химических законах, проверять их экспериментально, формулируя цель исследования;
- 4) владение методами самостоятельного планирования и проведения химических экспериментов с соблюдением правил безопасной работы с веществами и лабораторным оборудованием; сформированность умений описания, анализа и оценки достоверности полученного результата;
- 5) сформированность умений прогнозировать, анализировать и оценивать с позиций экологической безопасности последствия бытовой и производственной деятельности человека, связанной с переработкой веществ.
- 2) в *ценностно-ориентационной сфере* прогнозировать, анализировать и оценивать последствия для окружающей среды бытовой и производственной деятельности человека, связанной с переработкой веществ;
- 3) в *трудовой сфере* самостоятельно планировать и проводить химический эксперимент, соблюдая правила безопасной работы с веществами и лабораторным оборудованием;
- 4) в сфере физической культуры оказывать первую помощь при отравлениях, ожогах и других травмах, связанных с веществами и лабораторным оборудованием.

#### Выпускник научится:

- характеризовать основные методы познания: наблюдение, измерение, эксперимент;
- описывать свойства твердых, жидких, газообразных веществ, выделяя их существенные признаки;
- раскрывать смысл основных химических понятий «атом», «молекула», «химический элемент», «простое вещество», «сложное вещество», «валентность», «химическая реакция», используя знаковую систему химии;
- раскрывать смысл законов сохранения массы веществ, постоянства состава, атомно-молекулярной теории;
- различать химические и физические явления;
- называть химические элементы;
- определять состав веществ по их формулам;
- определять валентность атома элемента в соединениях;
- определять тип химических реакций;

- называть признаки и условия протекания химических реакций;
- выявлять признаки, свидетельствующие о протекании химической реакции при выполнении химического опыта;
- составлять формулы бинарных соединений;
- составлять уравнения химических реакций;
- соблюдать правила безопасной работы при проведении опытов;
- пользоваться лабораторным оборудованием и посудой;
- вычислять относительную молекулярную и молярную массы веществ;
- вычислять массовую долю химического элемента по формуле соединения;
- вычислять количество, объем или массу вещества по количеству, объему, массе реагентов или продуктов реакции;
- характеризовать физические и химические свойства простых веществ: кислорода и водорода;
- получать, собирать кислород и водород;
- распознавать опытным путем газообразные вещества: кислород, водород;
- раскрывать смысл закона Авогадро;
- раскрывать смысл понятий «тепловой эффект реакции», «молярный объем»;
- характеризовать физические и химические свойства воды;
- раскрывать смысл понятия «раствор»;
- вычислять массовую долю растворенного вещества в растворе;
- приготовлять растворы с определенной массовой долей растворенного вещества;
- называть соединения изученных классов неорганических веществ;
- характеризовать физические и химические свойства основных классов неорганических веществ: оксидов, кислот, оснований, солей;
- определять принадлежность веществ к определенному классу соединений;
- составлять формулы неорганических соединений изученных классов;
- проводить опыты, подтверждающие химические свойства изученных классов неорганических веществ;
- распознавать опытным путем растворы кислот и щелочей по изменению окраски индикатора;
- характеризовать взаимосвязь между классами неорганических соединений;
- раскрывать смысл Периодического закона Д.И. Менделеева;
- объяснять физический смысл атомного (порядкового) номера химического элемента, номеров группы и периода в периодической системе Д.И. Менделеева;
- объяснять закономерности изменения строения атомов, свойств элементов в пределах малых периодов и главных подгрупп;
- характеризовать химические элементы (от водорода до кальция) на основе их положения в периодической системе Д.И. Менделеева и особенностей строения их атомов;

- составлять схемы строения атомов первых 20 элементов периодической системы Д.И. Менделеева;
- раскрывать смысл понятий: «химическая связь», «электроотрицательность»;
- характеризовать зависимость физических свойств веществ от типа кристаллической решетки;
- определять вид химической связи в неорганических соединениях;
- изображать схемы строения молекул веществ, образованных разными видами химических связей;
- •раскрывать смысл понятий «ион», «катион», «анион», «электролиты», «электролиты», «электролитическая диссоциация», «окислитель», «степень окисления» «восстановитель», «окисление»;
- определять степень окисления атома элемента в соединении;
- раскрывать смысл теории электролитической диссоциации;
- составлять уравнения электролитической диссоциации кислот, щелочей, солей;
- объяснять сущность процесса электролитической диссоциации и реакций ионного обмена;
- составлять полные и сокращенные ионные уравнения реакции обмена;
- определять возможность протекания реакций ионного обмена;
- проводить реакции, подтверждающие качественный состав различных веществ;
- определять окислитель и восстановитель;
- составлять уравнения окислительно-восстановительных реакций;
- называть факторы, влияющие на скорость химической реакции;
- классифицировать химические реакции по различным признакам;
- характеризовать взаимосвязь между составом, строением и свойствами неметаллов;
- проводить опыты по получению, собиранию и изучению химических свойств газообразных веществ: углекислого газа, аммиака;
- распознавать опытным путем газообразные вещества: углекислый газ и аммиак;
- характеризовать взаимосвязь между составом, строением и свойствами металлов;
- •называть органические вещества по их формуле: метан, этан, этилен, метанол, этанол, глицерин, уксусная кислота, аминоуксусная кислота, стеариновая кислота, олеиновая кислота, глюкоза;
- оценивать влияние химического загрязнения окружающей среды на организм человека;
- грамотно обращаться с веществами в повседневной жизни
- определять возможность протекания реакций некоторых представителей органических веществ с кислородом, водородом, металлами, основаниями, галогенами.
- классифицировать химические элементы на металлы, неметаллы, элементы, оксиды и гидроксиды которых амфотерны, и инертные элементы (газы) для осознания важности упорядоченности научных знаний;
- раскрывать смысл периодического закона Д.И. Менделеева;
- описывать и характеризовать табличную форму периодической системы химических элементов;

- характеризовать состав атомных ядер и распределение числа электронов по электронным слоям атомов химических элементов малых периодов периодической системы, а также калия и кальция;
- различать виды химической связи: ионную, ковалентную полярную, ковалентную неполярную и металлическую;
- изображать электронные формулы веществ, образованных химическими связями разного вида;
- выявлять зависимость свойств вещества от строения его кристаллической решетки (ионной, атомной, молекулярной, металлической);
- характеризовать химические элементы и их соединения на основе положения элементов в периодической системе и особенностей строения их атомов;
- описывать основные предпосылки открытия Д.И. Менделеевым периодического закона и периодической системы химических элементов и многообразную научную деятельность ученого;
- характеризовать научное и мировоззренческое значение периодического закона и периодической системы химических элементов Д.И. Менделеева;
- осознавать научные открытия как результат длительных наблюдений, опытов, научной полемики, преодоления трудностей и сомнений.
- определять принадлежность неорганических веществ к одному из изученных классов/групп: металлы и неметаллы, оксиды, основания, кислоты, соли;
- составлять формулы веществ по их названиям;
- определять валентность и степень окисления элементов в веществах;
- составлять формулы неорганических соединений по валентностям и степеням окисления элементов, а также зарядам ионов, указанным в таблице растворимости кислот, оснований и солей;
- объяснять закономерности изменения физических и химических свойств простых веществ и их высших оксидов, образованных элементами второго и третьего периодов;
- называть общие химические свойства, характерные для групп оксидов: кислотных, основных, амфотерных.
- называть общие химические свойства, характерные для каждого класса веществ;
- приводить примеры реакций, подтверждающих химические свойства неорганических веществ: оксидов, кислот, оснований и солей;
- определять вещество окислитель и вещество восстановитель в окислительно восстановительных реакциях;
- составлять электронный баланс по предложенным схемам реакций;
- проводить лабораторные опыты, подтверждающие химические свойства основных классов неорганических веществ;
- проводить лабораторные опыты по получению и собиранию газообразных веществ: водорода, кислорода, углекислого газа, аммиака; составлять уравнения соответствующих реакций.

## Выпускник получит возможность научиться:

• выдвигать и проверять экспериментально гипотезы о химических свойствах веществ на основе их состава и строения, их способности вступать в химические реакции, о характере и продуктах различных химических реакций;

- характеризовать вещества по составу, строению и свойствам, устанавливать причинно-следственные связи между данными характеристиками вещества;
- составлять молекулярные и полные ионные уравнения по сокращенным ионным уравнениям;
- прогнозировать способность вещества проявлять окислительные или восстановительные свойства с учетом степеней окисления элементов, входящих в его состав;
- составлять уравнения реакций, соответствующих последовательности превращений неорганических веществ различных классов;
- выдвигать и проверять экспериментально гипотезы о результатах воздействия различных факторов на изменение скорости химической реакции;
- использовать приобретенные знания для экологически грамотного поведения в окружающей среде;
- использовать приобретенные ключевые компетенции при выполнении проектов и учебно-исследовательских задач по изучению свойств, способов получения и распознавания веществ;
- объективно оценивать информацию о веществах и химических процессах;
- критически относиться к псевдонаучной информации, недобросовестной рекламе в средствах массовой информации;
- осознавать значение теоретических знаний по химии для практической деятельности человека;
- создавать модели и схемы для решения учебных и познавательных задач; понимать необходимость соблюдения предписаний, предлагаемых в инструкциях по использованию лекарств, средств бытовой химии и др.
- осознавать значение теоретических знаний для практической деятельности человека;
- описывать изученные объекты как системы, применяя логику системного анализа;
- применять знания о закономерностях периодической системы химических элементов для объяснения и предвидения свойств конкретных веществ;
- развивать информационную компетентность посредством углубления знаний об истории становления химической науки, ее основных понятий, периодического закона как одного из важнейших законов природы, а также о современных достижениях науки и техники.
- объяснять суть химических процессов;
- называть признаки и условия протекания химических реакций;
- •устанавливать принадлежность химической реакции к определенному типу по одному из классифицированных признаков: 1) по числу и составу исходных веществ и продуктов реакции (реакции соединения, разложения, замещения и обмена); 2) по выделению или поглощению теплоты (реакции экзотермические и эндотермические); 3) по изменению степеней окисления химических элементов (окислительновосстановительные реакции); 4) по обратимости процесса (реакции обратимые и необратимые);
- называть факторы, влияющие на скорость химических реакций;
- называть факторы, влияющие на смещение химического равновесия;
- составлять уравнения электролитической диссоциации кислот, щелочей, солей; полные и сокращенные ионные уравнения реакций обмена; уравнения окислительно восстановительных реакций;

- прогнозировать продукты химических реакций по формулам / названиям исходных веществ; определять исходные вещества по формулам / названиям продуктов реакции;
- составлять уравнения реакций, соответствующих последовательности («цепочке») превращений неорганических веществ различных классов;
- выявлять в процессе эксперимента признаки, свидетельствующие о протекании химической реакции;
- готовить растворы с определенной массовой долей растворенного вещества;
- определять характер среды водных растворов кислот и щелочей по изменению окраски индикаторов;
- проводить качественные реакции, подтверждающие наличие в водных растворах веществ отдельных катионов и анионов. Выпускник получит возможность научиться:
- составлять молекулярные и полные ионные уравнения по сокращенным ионным уравнениям;
- приводить примеры реакций, подтверждающих существование взаимосвязи между основными классами неорганических веществ;
- прогнозировать результаты воздействия различных факторов на скорость химической реакции;
- прогнозировать результаты воздействия различных факторов на смещение химического равновесия.
- грамотно обращаться с веществами в повседневной жизни;
- осознавать необходимость соблюдения правил экологически безопасного поведения в окружающей природной среде;
- понимать смысл и необходимость соблюдения предписаний, предлагаемых в инструкциях по использованию лекарств, средств бытовой химии и др.;
- использовать приобретённые ключевые компетентности при выполнении исследовательских проектов по изучению свойств, способов получения и распознавания веществ;
- развивать коммуникативную компетентность, используя средства устной и письменной коммуникации при работе с текстами учебника и дополнительной литературой, справочными таблицами, проявлять готовность к уважению иной точки зрения при обсуждении результатов выполненной работы;
- объективно оценивать информацию о веществах и химических процессах, критически относиться к псевдонаучной информации, недобросовестной рекламе, касающейся использования различных веществ.
- осознавать значение теоретических знаний для практической деятельности человека;
- описывать изученные объекты как системы, применяя логику системного анализа;
- применять знания о закономерностях периодической системы химических элементов для объяснения и предвидения свойств конкретных веществ;
- развивать информационную компетентность посредством углубления знаний об истории становления химической науки, её основных понятий, периодического закона как одного из важнейших законов природы, а также о современных достижениях науки и техники.
- составлять молекулярные и полные ионные уравнения по сокращённым ионным уравнениям;
- приводить примеры реакций, подтверждающих существование взаимосвязи между основными классами неорганических веществ;

- прогнозировать результаты воздействия различных факторов на изменение скорости химической реакции;
- прогнозировать результаты воздействия различных факторов на смещение химического равновесия.
- прогнозировать химические свойства веществ на основе их состава и строения;
- прогнозировать способность вещества проявлять окислительные или восстановительные свойства с учётом степеней окисления элементов, входящих в его состав;
- выявлять существование генетической взаимосвязи между веществами в ряду: простое вещество оксид гидроксид соль;
- организовывать, проводить ученические проекты по исследованию свойств веществ, имеющих важное практическое значение.
- делать умозаключения (индуктивное и по аналогии) и выводы на основе аргументации.

# Содержание учебного предмета

## Тема 1. Строение атома и периодический закон Д. И. Менделеева

Основные сведения о строении атома. Ядро: протоны и нейтроны. Изотопы. Электроны. Электронная оболочка. Энергетический уровень. Особенности строения электронных оболочек атомов элементов 4-го и 5-го периодов периодической системы Д. И. Менделеева (переходных элементов). Понятие об орбиталях. *s*- и р-орбитали. Электронные конфигурации атомов химических элементов.

*Периодический закон Д. И. Менделеева в свете учения о строении атома*. Открытие Д. И. Менделеевым периодического закона.

Периодическая система химических элементов Д. И. Менделеева — графическое отображение периодического закона. Физический смысл порядкового номера элемента, номера периода и номера группы. Валентные электроны. Причины изменения свойств элементов в периодах и группах (главных подгруппах).

Положение водорода в периодической системе.

Значение периодического закона и периодической системы химических элементов Д. И. Менделеева для развития науки и понимания химической картины мира.

Демонстрации. Различные формы периодической системы химических элементов Д. И. Менделеева.

## Тема 2. Строение вещества

*Ионная химическая связь*. Катионы и анионы. Классификация ионов. Ионные кристаллические решетки. Свойства веществ с этим типом кристаллических решеток.

Ковалентная химическая связь. Электроотрицательность. Полярная и неполярная ковалентные связи. Диполь. Полярность связи и полярность молекулы. Обменный и донорно-акцепторный механизмы образования ковалентной связи. Молекулярные и атомные кристаллические решетки. Свойства веществ с этими типами кристаллических решеток.

*Металлическая химическая связь*. Особенности строения атомов металлов. Металлическая химическая связь и металлическая кристаллическая решетка. Свойства веществ с этим типом связи.

*Водородная химическая связь*. Межмолекулярная и внутримолекулярная водородная связь. Значение водородной связи для организации структур биополимеров.

*Полимеры*. Пластмассы: термопласты и реактопласты, их представители и применение. Волокна: природные (растительные и животные) и химические (искусственные и синтетические), их представители и применение.

*Газообразное состояние вещества*. Три агрегатных состояния воды. Особенности строения газов. Молярный объем газообразных веществ.

Примеры газообразных природных смесей: воздух, природный газ. Загрязнение атмосферы (кислотные дожди, парниковый эффект) и борьба с ним.

Представители газообразных веществ: водород, кислород, углекислый газ, аммиак, этилен. Их получение, собирание и распознавание.

Жидкое состояние вещества. Вода. Потребление воды в быту и на производстве. Жесткость воды и способы ее устранения.

Минеральные воды, их использование в столовых и лечебных целях.

Жидкие кристаллы и их применение.

*Твёрдое состояние вещества*. Аморфные твердые вещества в природе и в жизни человека, их значение и применение. Кристаллическое строение вещества.

Дисперсные системы. Понятие о дисперсных системах. Дисперсная фаза и дисперсионная среда. Классификация дисперсных систем в зависимости от агрегатного состояния дисперсной среды и дисперсионной фазы.

Грубодисперсные системы: эмульсии, суспензии, аэрозоли.

Тонкодисперсные системы: гели и золи.

*Состав вещества и смесей*. Вещества молекулярного и немолекулярного строения. Закон постоянства состава веществ.

Понятие «доля» и её разновидности: массовая (доля элементов в соединении, доля компонента в смеси — доля примесей, доля растворенного вещества в растворе) и объемная. Доля выхода продукта реакции от теоретически возможного.

## Тема 3. Химические реакции

Реакции, идущие без изменения состава веществ. Аллотропия и аллотропные видоизменения. Причины аллотропии на примере модификаций кислорода, углерода и фосфора. Озон, его биологическая роль.

Изомеры и изомерия.

Реакции, идущие с изменением состава веществ. Реакции соединения, разложения, замещения и обмена в неорганической и органической химии. Реакции экзо- и эндотермические. Тепловой эффект химической реакции и термохимические уравнения. Реакции горения, как частный случай экзотермических реакций.

Скорость химической реакции. Скорость химической реакции. Зависимость скорости химической реакции от природы реагирующих веществ, концентрации, температуры, площади поверхности соприкосновения и катализатора. Реакции гомо- и гетерогенные. Понятие о катализе и катализаторах. Ферменты как биологические катализаторы, особенности их функционирования.

Обратимость химических реакций. Необратимые и обратимые химические реакции. Состояние химического равновесия для обратимых химических реакций. Способы смещения химического равновесия на примере синтеза аммиака. Понятие об основных научных принципах производства на примере синтеза аммиака или серной кислоты.

*Роль воды в химической реакции*. Истинные растворы. Растворимость и классификация веществ по этому признаку: растворимые, малорастворимые и нерастворимые вещества.

Электролиты и неэлектролиты. Электролитическая диссоциация. Кислоты, основания и соли с точки зрения теории электролитической диссоциации.

Химические свойства воды: взаимодействие с металлами, основными и кислотными оксидами, разложение и образование кристаллогидратов. Реакции гидратации в органической химии.

Гидролиз органических и неорганических соединений. Необратимый гидролиз. Обратимый гидролиз солей.

Гидролиз органических соединений и его практическое значение для получения гидролизного спирта и мыла. Биологическая роль гидролиза в пластическом и энергетическом обмене веществ и энергии в клетке.

*Окислительно-восстановительные реакции*. Степень окисления. Определение степени окисления по формуле соединения. Понятие об окислительно-восстановительных реакциях. Окисление и восстановление, окислитель и восстановитель.

Электролиз. Электролиз как окислительно-восстановительный процесс. Электролиз расплавов и растворов на примере хлорида натрия. Практическое применение электролиза. Электролитическое получение алюминия.

#### Тема 4. Вешества и их свойства

*Металлы*. Взаимодействие металлов с неметаллами (хлором, серой и кислородом). Взаимодействие щелочных и щелочноземельных металлов с водой. Электрохимический ряд напряжений металлов. Взаимодействие металлов с растворами кислот и солей. Алюминотермия. Взаимодействие натрия с этанолом и фенолом.

Коррозия металлов. Понятие о химической и электрохимической коррозии металлов. Способы защиты металлов от коррозии.

*Неметаллы*. Сравнительная характеристика галогенов как наиболее типичных представителей неметаллов. Окислительные свойства неметаллов (взаимодействие с металлами и водородом). Восстановительные свойства неметаллов (взаимодействие с более электроотрицательными неметаллами и сложными веществами-окислителями).

*Кислоты неорганические и органические*. Классификация кислот. Химические свойства кислот: взаимодействие с металлами, оксидами металлов, гидроксидами металлов, солями, спиртами (реакция этерификации). Особые свойства азотной и концентрированной серной кислоты.

*Основания неорганические и органические*. Основания, их классификация. Химические свойства оснований: взаимодействие с кислотами, кислотными оксидами и солями. Разложение нерастворимых оснований.

Соли. Классификация солей: средние, кислые и основные. Химические свойства солей: взаимодействие с кислотами, щелочами, металлами и солями. Представители солей и их значение. Хлорид натрия, карбонат кальция, фосфат кальция (средние соли); гидрокарбонаты натрия и аммония (кислые соли); гидроксокарбонат меди (II) — малахит (основная соль).

Качественные реакции на хлорид-, сульфат-, и карбонат-анионы, катион аммония, катионы железа (II) и (III).

Генетическая связь между классами неорганических и органических соединений. Понятие о генетической связи и генетических рядах. Генетический ряд металла. Генетический ряд неметалла. Особенности генетического ряда в органической химии.

### Тема 5. Химия и общество

**Химия и производство.** Химическая промышленность, химическая технология. Сырье для химической промышленности. Вода в химической промышленности. Энергия для химического производства. Научные принципы

химического производства. Защита окружающей среды и охрана труда при химическом производстве. Основные стадии химического производства (аммиака и метанола). Сравнение производства этих веществ.

**Химия и сельское хозяйство.** Химизация сельского хозяйства и ее направления. Растения и почва, почвенный поглощающий комплекс (ППК). Удобрения и их классификация. Химические средства защиты растений.

Отрицательные последствия применения пестицидов и борьба с ними. Химизация животноводства.

**Химия и экология.** Химическое загрязнение окружающей среды. Охрана гидросферы от химического загрязнения. Охрана почвы от химического загрязнения. Охрана атмосферы от химического загрязнения. Охрана флоры и фауны от химического загрязнения. Биотехнология и генная инженерия.

**Химия и повседневная жизнь человека.** Домашняя аптечка. Моющие и чистящие средства. Средства борьбы с бытовыми насекомыми. Средства личной гигиены и косметики. Химия и пища. Маркировка упаковок пищевых продуктов и промышленных товаров и умение их читать. Экология жилища. Химия и генетика человека.

**Демонстрации**. Модели производства серной кислоты и аммиака. Коллекция удобрений и пестицидов. Образцы средств бытовой химии и лекарственных препаратов. Коллекции средств гигиены и косметики, препаратов бытовой химии.

# Календарно-тематическое планирование учебного предмета

| No॒       | Тема урока                                                            | Кол.  | По плану | По факту |
|-----------|-----------------------------------------------------------------------|-------|----------|----------|
| $\Pi/\Pi$ |                                                                       | часов |          |          |
| 1         | Атом – сложная частица                                                | 1     |          |          |
| 2         | Состояние электронов в атоме                                          | 1     |          |          |
|           |                                                                       |       |          |          |
| 3         | Электронные конфигурации атомов химических элементов                  | 1     |          |          |
| 4         | Электронные конфигурации атомов химических элементов                  | 1     |          |          |
| 5         | Валентные возможности атомов химических элементов                     | 1     |          |          |
| 6         | Периодический закон и Периодическая система химических элементов Д.И. | 1     |          |          |
|           | Менделеева и строение атома                                           |       |          |          |
| 7         | Периодический закон и Периодическая система химических элементов Д.И. | 1     |          |          |
|           | Менделеева и строение атома                                           |       |          |          |
| 8         | Контрольная работа № 1 по теме <i>«Строение атома»</i>                | 1     |          |          |

| 9  | Химическая связь.                                                           | 1 |  |
|----|-----------------------------------------------------------------------------|---|--|
| 10 | Химическая связь.                                                           | 1 |  |
| 11 | Гибридизация электронных орбиталей                                          | 1 |  |
| 12 | Дисперсные системы и растворы                                               | 1 |  |
| 13 | Дисперсные системы и растворы                                               | 1 |  |
| 14 | Теория строения химических соединений А.М. Бутлерова                        | 1 |  |
| 15 | Теория строения химических соединений А.М. Бутлерова                        | 1 |  |
| 16 | Полимеры                                                                    | 1 |  |
| 17 | Полимеры.                                                                   | 1 |  |
|    | <i>Практическая работа №1</i> «Решение экспериментальных задач по           |   |  |
|    | определению пластмасс и волокон»                                            |   |  |
| 18 | Контрольная работа № 2 по теме <i>«Строение вещества»</i>                   | 1 |  |
| 19 | Классификация химических реакций                                            | 1 |  |
| 20 | Классификация химических реакций                                            | 1 |  |
| 21 | Классификация химических реакций                                            | 1 |  |
| 22 | <i>Практическая работа №2</i> «Получение, собирание и распознавание газов и | 1 |  |
|    | изучение их свойств».                                                       |   |  |
| 23 | Почему протекают химические реакции                                         | 1 |  |
| 24 | Скорость химических реакций                                                 | 1 |  |
| 25 | Скорость химических реакций                                                 | 1 |  |
| 26 | <u>Практическая работа №3</u>                                               | 1 |  |
|    | «Скорость химических реакций. Химическое равновесие»                        |   |  |
| 27 | Решение расчетных задач по ТХУ                                              | 1 |  |
| 28 | Обратимость химических реакций. Химическое равновесие                       | 1 |  |
| 29 | Обратимость химических реакций. Химическое равновесие                       | 1 |  |
| 30 | Электролитическая диссоциация                                               | 1 |  |
| 31 | Электролитическая диссоциация                                               | 1 |  |
| 32 | Гидролиз                                                                    | 1 |  |

| 33 | <i>Практическая работа №4</i> «Решение экспериментальных задач по теме  | 1 |  |
|----|-------------------------------------------------------------------------|---|--|
|    | «Гидролиз»»                                                             |   |  |
| 34 | Контрольная работа № 3 <i>«Химические реакции»</i>                      | 1 |  |
| 35 | Классификация веществ                                                   | 1 |  |
| 36 | Классификация веществ                                                   | 1 |  |
| 37 | Классификация веществ                                                   | 1 |  |
| 38 | <i>Практическая работа №5</i> «Сравнение свойств неорганических и       | 1 |  |
|    | органических соединений»                                                |   |  |
| 39 | Металлы                                                                 | 1 |  |
| 40 | Металлы                                                                 | 1 |  |
| 41 | Металлы                                                                 | 1 |  |
| 42 | Металлы                                                                 | 1 |  |
| 43 | Неметаллы                                                               | 1 |  |
| 44 | Неметаллы                                                               | 1 |  |
| 45 | Неметаллы                                                               | 1 |  |
| 46 | Неметаллы                                                               | 1 |  |
| 47 | Кислоты органические и неорганические                                   | 1 |  |
| 48 | Кислоты органические и неорганические                                   | 1 |  |
| 49 | Основания органические и неорганические                                 | 1 |  |
| 50 | Основания органические и неорганические                                 | 1 |  |
| 51 | <i>Практическая работа №6</i> «Решение экспериментальных задач по       | 1 |  |
|    | неорганической химии»                                                   |   |  |
| 52 | <i>Практическая работа № 7</i> «Решение экспериментальных задач по      | 1 |  |
|    | органической химии»                                                     |   |  |
| 53 | Амфотерные органические и неорганические соединения                     | 1 |  |
| 54 | Генетическая связь между классами неорганических и органических веществ | 1 |  |
| 55 | Обобщение и систематизация знаний по теме «Вещества и их свойства»      | 1 |  |
| 56 | Практическая работа №8                                                  | 1 |  |

|     | «Генетическая связь между классами неорганических и органических       |   |  |
|-----|------------------------------------------------------------------------|---|--|
|     | веществ»                                                               |   |  |
| 57  | Решение расчетных задач                                                | 1 |  |
| 58  | Контрольная работа № 4 <i>«Вещества и их свойства»</i>                 | 1 |  |
| 59  | Химия и производство.                                                  | 1 |  |
| 60  | Химия и сельское хозяйство.                                            | 1 |  |
| 61  | Химия и проблемы охраны окружающей среды                               | 1 |  |
| 62  | Химия и повседневная жизнь человека.                                   | 1 |  |
| 63  | Решение расчетных задач                                                | 1 |  |
| 64  | Решение расчетных задач                                                | 1 |  |
| 65- | Решение типовых задач по химии – вычисление продукта реакции если одно | 2 |  |
| 66  | из реагирующих веществ взято в избытке, вычисление продукта реакции,   |   |  |
|     | полученного из вещества, содержащего массовую долю в % примесей        |   |  |
| 67  | Решение типовых задач по химии – способы выражения состава растворов   | 1 |  |
| 68  | Итоговая контрольная работа № 5                                        | 1 |  |